
1 novinky

Let F and G be affine algebraic curves defined by polynomials

F = Fm + Fm+1 + · · · , (1)

G = Gn +Gn+1 + · · · , (2)

where m,n > 0, Fm 6= 0, Gn 6= 0. Let O be the local ring at O, and let I be the ideal (x, y). So far, we have
used this beautiful diagram of vector spaces and linear maps from Fulton [W. Fulton: Algebraic Curves, p. 38]

k[x, y]/In × k[x, y]/Im
ψ
// k[x, y]/Im+n ϕ

// k[x, y]/(Im+n, F,G)

α

��

// 0

O/(F,G)
π // O/(Im+n, F,G) // 0,

where ϕ and π are natural surjective homomorphisms, α is isomorphism, and ψ is defined by ψ(A,B) =
AF − BG. The top row forms an exact sequence. Thanks to this diagram, we know that the intersection
multiplicity is equal to

IO(F,G) = dim(O/(F,G)) = mn+ dim(ker(π)) + dim(ker(ψ)) (3)

Now we can create a similar diagram with more maps and spaces.

O/(I0, F,G)

...

ω1

OO

O/(Im+n−1, F,G)

ωm+n−1

OO

O/(F,G)

π0

>>

πm+n−1

44

πm+n
//

πm+n+1

**

πz

  

O/(Im+n, F,G)

ωm+n

OO

O/(Im+n+1, F,G)

ωm+n+1

OO

...

OO

O/(Iz, F,G)

ωz

OO

where O/(Iz, F,G) ∼= O/(F,G), which means that the map πz is an isomorphism.

QUESTION I:
How do we know there is such z for each pair of curves? Can we find one for each pair of curves?

All the maps are surjective linear maps and dim(O/(I0, F,G)) = 0, therefore

IO(F,G) = dim(O/(F,G)) = dim(ker(π0)) = dim(ker(ωz)) + · · ·+ dim(ker(ω1)). (4)

We have written the intersection multiplicity as a sum of integers which depend on the dimensions of the vector
spaces O/(Ii, F,G).

QUESTION II:
Is there a meaning behind this? Possibly some geometry? Do the maps ωi have some nice properties?

The maps maps ωi describe the differences of dimensions of the vector spaces O/(Ii, F,G). We want to
know more about them.
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1.1 How to know more about ωi

Now we can have add some more vector spaces and maps to our diagram.

O/(I0, F,G) k[x, y]/I0
ϕ0

oo

...

OO

...

OO

O/(Im+n−1, F,G)

ωm+n−1

OO

k[x, y]/Im+n−1
ϕm+n−1

oo

δm+n−1

OO

O/(F,G)
πm+n

//

πm+n+1

++

πz

##

πm+n−1

33

π0

<<

O/(Im+n, F,G)

ωm+n

OO

k[x, y]/Im+n
ϕm+n

oo

δm+n

OO

O/(Im+n+1, F,G)

ωm+n+1

OO

k[x, y]/Im+n+1
ϕm+n+1

oo

δm+n+1

OO

...

OO

...

OO

O/(Iz, F,G)

ωz

OO

k[x, y]/Iz
ϕz

oo

δz

OO

(The original maps π and ϕ from the Fulton’s diagram are now called πm+n and ϕm+n.) All these maps are
surjecive linear maps, and all the squares in this diagram are commutative. Therefore for each ωi we know that

dim(ker(ωi)) + dim(ker(ϕi)) = dim(ker(δi)) + dim(ker(ϕi−1)). (5)

This can be done also for bigger squares,

dim(ker(ωi))+ · · ·+dim(ker(ωi−k))+dim(ker(ϕi)) = dim(ker(δi))+ · · ·+dim(ker(δi−k))+dim(ker(ϕi−k)). (6)

If we do this for the biggest square of the diagram, we get

z∑
i=1

dim(ker(ωi)) + dim(ker(ϕz)) =

z∑
i=1

dim(ker(δi)) + dim(ker(ϕ0)). (7)

But
∑z
i=1 dim(ker(ωi)) = dim(O/(Iz, F,G)) = dim(O/(F,G)) = IO(F,G), and dim(ker(ϕ0)) = 0, so we obtain

a new formula for the intersection multiplicity,

IO(F,G) =

z∑
i=1

dim(ker(δi))− dim(ker(ϕz)). (8)

Since dim(ker(δi)) = i for any choice of F and G, the first part is boring. We need to focus on the map ϕi.
This map can help us with the new intersection multiplicity formula, but also with individual maps ωi.

1.2 How to know more about ϕi

To know more about ϕi, we can use Fulton’s another trick, the map ψ. For each i ≥ max{m,n} we have the
following exact sequence

k[x, y]/Ii−m × k[x, y]/Ii−n
ψi // k[x, y]/Ii

ϕi // O/(Ii, F,G),

where ψi(A,B) = AF −BG. Now we can use the exactness in k[x, y]/Ii to find ker(ϕi). We know that

ker(ϕi) ∼= Im(ψi) ∼=
(
k[x, y]/Ii−m × k[x, y]/Ii−n

)
/ ker(ψi). (9)

The dimension of the space k[x, y]/Ii−m × k[x, y]/Ii−n is pretty straightforward.

dim
(
k[x, y]/Ii−m × k[x, y]/Ii−n

)
=

1

2
((i−m+ 1)(i−m) + (i− n+ 1)(i− n)). (10)

2



We have already spent some time on dim(ker(ψm+n)). And there are similarities between ker(ψi) and ker(ψj).

QUESTION III:
What is the relationship between ker(ψi) and ker(ψj) for various combinations of i and j?

Now we can substitute into (8).

IO(F,G) =

z∑
i=1

dim(ker(δi))− dim(ker(ϕz)) =

=

z∑
i=1

dim(ker(δi))−
(
dim(k[x, y]/Iz−m × k[x, y]/Iz−n)− dim(ker(ψz))

)
=

=
1

2
(1 + z)z − 1

2
((z −m+ 1)(z −m) + (z − n+ 1)(z − n)) + dim(ker(ψz)) =

=
1

2
(z2 − (z −m)2 − (z − n)2 − z +m+ n) + dim(ker(ψz)) =

= z2

(
−1

2

)
+ z

(
m+ n− 1

2

)
+

1

2
(m+ n−m2 − n2) + dim(ker(ψz)) = Ξm,n(z) + dim(ker(ψz)).

(11)

Which is a nice formula for intersection multiplicity. I’ve decided to write the first part as a polynomial in z,
because that is how I feel it.

QUESTION IV:
We need to have a closer look on the polynomial Ξm,n(z) = z2

(
− 1

2

)
+ z

(
m+ n− 1

2

)
+ 1

2 (m + n − m2 −
n2). Maybe its shape could help us with the search for the sufficient value of z. Or give us some kind of
upper/lower bound for intersection multiplicity.

UPDATE 21.2.2021:
Under what conditions is Ξm,n(z) = z2

(
− 1

2

)
+ z

(
m+ n− 1

2

)
+ 1

2 (m+ n−m2 − n2) an integer? Because it
needs to be an integer.
UPDATE2 21.2.2021:
Ok, nevermind, it is an integer for all m,n, z integers
Ξm,n(z) = z2

(
− 1

2

)
+ z

(
m+ n− 1

2

)
+ 1

2 (m+ n−m2 − n2) = z(m+ n)− 1
2 [z(z + 1)−m(m− 1)− n(n− 1)]

= (integer)− 1
2 [(even number)]

UPDATE3 21.2.2021:
Could we make some kind of algorithm for dim(ker(ψz))? Because that would be nice.

UPDATE4 21.2.2021:
Maybe if the number z0 (the lowest z, such that O/(F,G) = O/(Iz, F,G)) is somewhere where Ξm,n(z) is
still positive, we could make some claims about the intersection multiplicity. But I don’t know if this is a
good idea.

2 example

Let F and G be curves defined by the polynomials

F = x2 − y7, (12)

G = x3 − y10. (13)

In this case, m = 2, n = 3 and we already know that IO(F,G) = 20. The lowest possible value for z is
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z = 13 (this has been calculated manually). The corresponding diagram looks like this:

O/(I0, F,G) k[x, y]/I0
ϕ0

oo

...

OO

...

OO

O/(I3, F,G)

ω3

OO

k[x, y]/I3
ϕ3

oo

δ3

OO

k[x, y]/I1 × k[x, y]/I0

ψ3

oo

O/(I4, F,G)

ω4

OO

k[x, y]/I4
ϕ4

oo

δ4

OO

k[x, y]/I2 × k[x, y]/I1

ψ4

oo

O/(F,G)
π5 //

π6

))

π13

��

π4

55

π3

<<

π0

EE

O/(I5, F,G)

ω5

OO

k[x, y]/I5
ϕ5

oo

δ5

OO

k[x, y]/I3 × k[x, y]/I2

ψ5

oo

O/(I6, F,G)

ω6

OO

k[x, y]/I6
ϕ6

oo

δ6

OO

k[x, y]/I4 × k[x, y]/I3

ψ6

oo

...

OO

...

OO

· · ·

O/(I13, F,G)

ω13

OO

k[x, y]/I13
ϕ13

oo

δ13

OO

k[x, y]/I11 × k[x, y]/I10,
ψ13

oo

Now the same diagram, but the vector spaces are replaced with their dimensions, and maps are replaced with
dimensions of their kernels. (Note, that the maps ψi are not surjective.) I don’t know if we ever need all of
them, but I want to have them here anyway.
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0 0
0oo

1

1

OO

1
0oo

1

OO

3

2

OO

3
0oo

2

OO

5

2

OO

6
1oo

3

OO

1
0oo

7

2

OO

10
3oo

4

OO

4
1oo

20
11 //

13

33
15

88

17

<<

19

@@

20

CC

9

++7

&&

5

""

4

��

3

��

2

��

1

��

0

��

9

2

OO

15
6oo

5

OO

9
3oo

11

2

OO

21
10oo

6

OO

16
6oo

13

2

OO

28
15oo

7

OO

25
10oo

15

2

OO

36
21oo

8

OO

36
15oo

16

1

OO

45
29oo

9

OO

49
20oo

17

1

OO

55
38oo

10

OO

64
26oo

18

1

OO

66
48oo

11

OO

81
33oo

19

1

OO

78
59oo

12

OO

100
41oo

20

1

OO

91
71oo

13

OO

121
50oo

I have no conclusion for this, but I’m happy it works.
Anyway, we can check with our new pretty formula:

IO(F,G) = Ξm,n(z) + dim(ker(ψz)) = z2

(
−1

2

)
+ z

(
m+ n− 1

2

)
+

1

2
(m+ n−m2 − n2) + dim(ker(ψz)) =

=

(
−1

2

)
132 + 13

(
2 + 3− 1

2

)
+ 2 + 3− 4− 9 + 50 = 20.

(14)

Nice.
And what does Ξm,n(z) look like in this case?

Ξ2,3(z) =

(
−1

2

)
z2 +

(
9

2

)
z − 4. (15)

The figure shows the intersection of Ξ2,3(z) with the
line z = 13.
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I wonder what Ξ looks like for other combinations of m and n.

3 A little about Ξ

The polynomial Ξm,n(z) = z2
(
− 1

2

)
+ z

(
m+ n− 1

2

)
+ 1

2 (m + n − m2 − n2) is a concave parabola for any
combination of m and n. Its maximum is at the point z = m+ n− 1/2.
The actual graph is here: https://www.desmos.com/calculator/9usvoa0nd3

4 18.8 - UPDATE - a little about the sufficient values of z

Let F and G be curves defined by

F = xa − yA, (16)

G = xb − yB . (17)

where x = 0 is their only common tangent at the origin. (therefore a < A and b < B).

Then possible (not smallest possible) value for z is

z =

{
B +A− b− a+B + a− 1 if IO(F,G) = aB

B +A− b− a+ b+A− 1 if IO(F,G) = bA
(18)

Current proof for this is ugly (= nonelegant). I hope I’ll find a prettier one.

4.1 Some easier cases of z:

From now on, let z0 be the lowest possible value of z.

• If a = b or A = B, then (F,G, Ik) ∼ (xa, yA, Ik), and z0 = a+A− 1.

• If b > a and A > B, then (F,G, Ik) ∼ (xa, yB , Ik), and z0 = a+B − 1.

• I don’t have the rest calculated yet

5 27.8. UPDATE - one more example

Let us do the same diagram for the curves

F = x5 − y7, (19)

G = x6 − y11. (20)

This time, with color coding. The blue part does not depend on the choice of F and G (it depends only on the
index of the row where it is positioned). The cyan part also depends only on the row index, but the number
of cyan elements depend on m and n. The red part depends on row index, m and n. The orange part itself
is most probably not very interesting, but it would be nice to determine where it starts (this is the number
z0). We can continue with the orange part for however long we want, but it will not bring us any more new
information.
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0 0
∼=oo

1

1

OO

1
∼=oo

1

OO

3

2

OO

3
∼=oo

2

OO

6

3

OO

6
∼=oo

3

OO

10

4

OO

10
∼=oo

4

OO

15

5

OO

15
∼=oo

5

OO

20

5

OO

21
1oo

6

OO

1
0oo

25

5

OO

28
3oo

7

OO

4
1oo

2+1

OO

30

5

OO

36
6oo

8

OO

9
3oo

3+2

OO

35

5

OO

45
11oo

9

OO

16
5oo

4+3

OO

37

2

OO

55
18oo

10

OO

25
7oo

5+4

OO

42
3 //

5

33
7

88

12

<<

17

@@

22

CC

27

EE

32

FF

36

GG

39

HH

41

II

42

JJ

2

++1

&&

∼=

""

∼=

��

∼=

��

39

2

OO

66
27oo

11

OO

36
9oo

6+5

OO

40

1

OO

78
38oo

12

OO

49
11oo

7+6

OO

41

1

OO

91
50oo

13

OO

64
14oo

8+7

OO

42

1

OO

105
63oo

14

OO

81
18oo

9+8

OO

42

∼=

OO

120
78oo

15

OO

100
22oo

10+9

OO

42

∼=

OO

136
94oo

16

OO

121
27oo

11+10

OO

· · · · · · · · ·
The blue, red and cyan spaces and maps have dimensions in obvious relation. In the orange part, we know

that (dim(ker(ψk))− dim(ker(ψk−1))) = k −m− n, and (dim(ker(ϕk))− dim(ker(ϕk−1))) = k.

We expect the black parts to be the important parts.
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QUESTION V:
Where does the cyan part end? Perhaps min(m,n)?

6 UPDATE: 3.9.2020 - intermezzo

CH: Could z1 = deg(F ) · deg(G) be sufficient for every pair of curves F , G? Can we find such F and G,
that O/(F,G, Iz1) ∼= O/(F,G), but O/(F,G, Iz1−1) 6= O/(F,G)?

CH: Can we find some connection between Ξm,n and the Hilbert polynomial?

CH: Blow-ups of curves and their ”trimmed” versions

CH: Dynkin diagram

CH: The derivative principle of ∂2f
∂x∂y = ∂2f

∂y∂x

This is getting bleh again. I should make some pretty html version of this. i don’t know :-/

CH - 20-09-02

7 UPDATE: 3.9.2020 - How does this structure behave in certain
cases?

this update is basically a preparation, the next update (UPDATE 8.9.2020) is the result.

This is going to be a list of special cases of pairs of curves F and G and their behavior in the diagram.
Hopefully i’ll be able to cover as much cases as possible. I’ll start with the very simple combinations of curves.
Especially, we are interested in the sequence of degrees of the kernels of ωi’s. That means

{0} ∼= O/(I0, F,G) O/(I1, F,G)
ω1oo O/(I2, F,G)

ω2oo · · ·ω3oo O/(Iz0 , F,G) ∼= O/(F,G)
ωz0oo

7.1 Properties of the sequence

Without loss of generality, let F = Fm + Fm+1 + · · · and G = Gn +Gn+1 + · · · , where m ≤ n and Fm and Gn
are nonzero. Then

• The first m members of the sequence are equal to their index. For i = 1, . . . ,m, dim(ker(ωi)) = i. This
is because the here ϕi is always an isomorphism.

• Then, until the index i = n, dim(ker(ωi)) = m. This is because here, dim(ker(ψi)) = 0.

• After the index i = m, the sequence cannot grow anymore. So for i > m we have dim(ker(ωi+1)) ≤
dim(ker(ωi+1)).

This needs a proper proof !
UPDATE 24.9.: I think this ↑ can be proven from the existence of the maps ψi.

Therefore once we reach ωi = 0, for all j > i, ωj = 0, and we are done.
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So no matter what, we start with

O/(I0, F,G) 0

O/(I1, F,G)

ω1

OO

1

1

OO

O/(I2, F,G)

ω2

OO

3

2

OO

...

ω3

OO

...

3

OO

O/(Im, F,G)

ωm

OO

1
2 (m)(m+ 1)

m

OO

O/(Im+1, F,G)

ωm+1

OO

1
2 (m)(m+ 1) +m

m

OO

O/(Im+2, F,G)

ωm+2

OO

1
2 (m)(m+ 1) + 2m

m

OO

...

ωm+3

OO

...

m

OO

O/(In, F,G)

ωn

OO

1
2 (m)(m+ 1) + (n−m)m

m

OO

So the beginning of the sequence Ω = (ω1, ω2, · · · ) is always

1, 2, · · · m− 1, m,

n−m+1

m, · · · m

(the bottom curve indicates number of members). Sum of its members is mn− 1
2 (m2 −m), (which is less than

mn). Now the geometry starts to be important.

QUESTION: Is there some kind of relationship between the sequences (F1, F2), (F1, G), (F2, G) and (F1 +
F2, G), (F1 · F2, G)? Or something similar?

example E - 20-08-12 - F = x4 − y12, G = x7 − y8

example E - 20-08-10 - F = x− y8, G = x5 − y9

7.2 Let F and G have no tangents in common

Then the sequence symmetrical with a mirror at m+n
2 . Therefore it is

1, · · · m− 1, m,

n−m+1

· · · m, m− 1, · · · 1, 0, 0, · · ·

example E 20-08-27 - F = x3 − y7, G = y5 − x8

example E 20-08-15 - F = (x− y)2 + y5, G = x3y − (x+ y)8
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7.3 Let F and G be curves which satisfy IO(F,G) = mn + t

which is the minimal intersection multiplicity for two curves with t common tangents.
Then the sequence is almost the same as in the previous case, but on its way down, it contains the value t two
times.

1, · · · m− 1, m,

n−m+1

· · · m, m− 1, · · · t+ 1, t, t, t− 1, · · · 1, 0

I have a feeling it happened like this:

1, · · · m− 1, m,

n−m+1

· · · m, m− 1, · · · t+ 1, t, t− 1, t− 2, · · · 1 0, 0

+1

OO

t

+1

OO

· · · +1

OO

+1

OO

(the dotted arrows are not maps, they are just connections of the symbols on the paper)

example E 20-08-25 - F = x2 + F3, G = xy3 +G5

7.4 Let m = 1

Let F and G be curves defined by

F = x+ F2 + · · · (21)

G = xG′n−1 +Gn+1 + · · · . (22)

Then our sequence Ω is

1,

n+1

· · · 1, ωn+2, ωn+3, ωn+4, · · · ,

where

• ωn+2 = 1 if and only if Gn+1−G′n−1F2 is divisible by x. That means there is Hn (homogeneous of degree
n or equal to zero), such that

Gn+1 −G′n−1F2 = xHn (23)

Otherwise, it is 0 (along with all following members of the sequence).

• ωn+3 = 1 if and only if there is Hn+1 (homogeneous of degree n+ 1 or equal to zero), such that

Gn+2 −G′n−1F3 −HnF2 = xHn+2. (24)

Otherwise, it is 0 (along with all following members of the sequence).

• ωn+4 = 1 if and only if there is Hn+2 (homogeneous of degree n+ 2 or equal to zero), such that

Gn+3 −G′n−1F4 −HnF3 −Hn+1F2 = xHn+2. (25)

Otherwise, it is 0 (along with all following members of the sequence).

example E 20-09-05 - general example

7.5 UPDATE 8.9.2020 - Conclusion of these cases

Okay, my hypothesis is that in general the sequence Ω looks like this: (where t is the number of common
tangents at O)

1, 2, · · · m− 1, m,

n−m+1

· · · m, m− 1, · · · t, t− 1, · · · 1, 0, 0, · · ·

+?

OO

· · · +?

OO

+?

OO

+?

OO

· · ·
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So basically the first row is fixed, but at the end, starting with the number t− 1, the elements can be increased
by some nonnegative integers. These increases depend on the intersection, but right now, I don’t know how.

this needs a proper proof

By the way, sum of the first row is∑
Ω = (1 + 2 + · · ·+m− 1) +m(n−m+ 1) + (m− 1 +m− 2 + · · ·+ 1) =

= m(m− 1) +m(n− (m− 1)) =

= mn,

(26)

which is nice.
example E 20-09-08 - general example with only one tangent in common

example E 20-09-01 - example F = x(x− y) + y5, G = xy3 + (x− y)9

8 20.1.2021: the xα − yβ curves

Let F and G be curves defined by the polynomials

F = xa − yA, (27)

G = xb − yB , (28)

where a < A and b < B (that means each of these curves has the only tangent at O, the line x = 0, with the
multiplicity a and b). Without loss of generality, let a ≤ b.
In lot of cases, the sequence creates this neat (but a little boring) hill:

1, 2, · · · a− 1, a,

I
a−a+1

· · · a, a− 1, · · · 1, 0, 0, · · ·

When it comes to numbers a, b, A,B, the general case split into several cases. Some of them are of the
boring hill type.

add label

• Let a = b < A < B. Then

F = xa − yA, (29)

G = xa − yA+l, (30)

and IO(F,G) = aA. In this case O/(F,G, Ik) = O/(xa, yA, Ik) for each k, therefore, the sequence is
always of the boring hill type and z0 = a+A− 1.

1, 2, · · · a− 1, a,

A−a+1

· · · a, a− 1, · · · 1, 0, 0, · · ·

• Let a < b < A = B. Then

F = xa − yA, (31)

G = xa+l − yA, (32)

and IO(F,G) = aA. This case is similar to the previous one. Here O/(F,G, Ik) = O/(xa, yA, Ik) for each
k, therefore, the sequence is always of the boring hill type and z0 = a+A− 1.

1, 2, · · · a− 1, a,

A−a+1

· · · a, a− 1, · · · 1, 0, 0, · · ·

• Let a < b < B < A. Then

F = xa − yB+L, (33)

G = xa+l − yB , (34)

and IO(F,G) = aB. This case is similar to the previous one. Here O/(F,G, Ik) = O/(xa, yB , Ik) for each
k, therefore, the sequence is always of the boring hill type and z0 = a+B − 1.

1, 2, · · · a− 1, a,

B−a+1

· · · a, a− 1, · · · 1, 0, 0, · · ·
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Now the leftover cases are

• a < A < b < B,

• a < b < A < B,

• a < b = A < B.

these are not as simple. They can result into the boring hill, but not necessarily.

When exactly does the boring hill happen?

9 Some examples

these need to be labeled

Each example starts with the equation IO(F,G) = mn+ t+ l in their corresponding numbers.
First, some boring hills.

9.1 Let F = x2 − y5 and G = x2 − y6.

Then 10 = 2 · 2 + 2 + 4, z0 = 6 and the Ω sequence is (boring hill):

1, 2, 2, 2, 2, 1

9.2 Let F = x3 − y7 and G = x4 − y7.

Then 21 = 3 · 4 + 3 + 6, z0 = 9 and the Ω sequence is (boring hill):

1, 2, 3, 3, 3, 3, 3, 2, 1

9.3 Let F = x5 − y8 and G = x10 − y19.

Then 80 = 5 · 10 + 5 + 25, z0 = 20 and the Ω sequence is (boring hill):

1, 2, 3, 4, 5,

12

· · · 5, 4, 3, 2, 1

Now some non-boring hills.

What is the shortest Ω sequence, which is not a boring hill?

9.4 Let F = x5 − y8 and G = x8 − y12.

Then 60 = 5 · 8 + 5 + 15, z0 = 17 and the Ω sequence is:

1, 2, 3, 4, 5,

7

· · · 5, 4, 3, 3, 2, 2, 1

Now, since IO(F1F2, G) = IO(F1, G) + IO(F2, G), I’ve tried to do some examples to find out if we can see some
kind of similar relationship in the Ω sequences, but with no luck so far.

9.5 Let F = x4 − y6 = (x2 − y3)(x2 + y3) = F1F2 and G = x2 − y6

Ok, I think it’s time for some new notation, I need something like ΩF,G.

ΩF1,G = 1, 2, 2, 1

ΩF2,G = 1, 2, 2, 1

ΩF1F2,G = 1, 2, 2, 2, 2, 2, 1

12



9.6 Let F = x6 − y10 = (x3 − y5)(x3 + y5) = F1F2 and G = x7 − y12

Then
ΩF1,G = 1, 2, 3,

9

· · · 3, 2, 1, 1, 1

ΩF2,G = 1, 2, 3,

9

· · · 3, 2, 1, 1, 1

ΩF1F2,G = 1, 2, 3, 4, 5, 6,

6

· · · 6, 5, 3, 2, 1, 1, 1, 1, 1

Let F = x2 − y3, G = x3 − y5

Then 9 = 2 · 3 + 2 + 1, z0 = 6 and the Ω sequence is:

1, 2, 2, 2, 1, 1

Also I think this is the shortest non-boring hill one of the cases F = xa − yA, G = xb − yB .

10 23.2.2021: A slightly different point of view

I’m beginning to see the whole problem to be not of a problem of kernels, but a problem of differences between
the kernels.
First of all, let us revisit the sequence Ω. Let F = Fm + · · · and G = Gn + · · · , with m ≤ n. The ”ground” of
the sequence can be understood as this:

1,

this part is fixed no matter what

2, · · · m− 1, m,

n−m+1

· · · m, m− 1, m− 2, · · · 3, 2, 1, 0, −1 −2 −3 · · ·

+?

OO

+?

OO

· · · +?

OO

+?

OO

+?

OO

+?

OO

+?

OO

+?

OO

+?

OO

· · ·

The first (fixed) part looks like above for any pair of curves F and G and therefore is not very interesting. The
rest of the sequence can be increased by some integers, depending on the curves. This (nonfixed) part comes
from the polynomial Ξm,n(z) defined as

Ξm,n(z) = z2

(
−1

2

)
+ z

(
m+ n− 1

2

)
+

1

2
(m+ n−m2 − n2). (35)

Let us remind that

O/(F,G, Iz) = Ξm,n(z) + dim(ker(ψz)) for z ≥ n
IO(F,G) = O/(F,G, Iz) = Ξm,n(z) + dim(ker(ψz)) for z ≥ z0.

(36)

For our purposes, the polynomial Ξm,n(z) makes sense only for z ≥ n, because it is defined as Ξm,n(z) =∑z
i=1 dim(ker(δi))− (dim(k[x, y]/Iz−m × k[x, y]/Iz−n))

The integers from the ”ground” are actually the differences (Ξm,n(z)−Ξm,n(z− 1)). Now we can say what
the integers are increased by. Let Ψi = dim(ker(ψi)). Then

1,

fixed part

· · · m− 1, m,

n−m+1

· · · m, m− 1, m− 2, m− 3 · · ·

+(Ψn+1 − 0)

OO

+(Ψn+2 −Ψn+1)

OO

+(Ψn+3 −Ψn+2)

OO

· · ·
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Maybe I should add some ”difference” notation, for the sake of shorter text. For now, let ∆i = Ψi − Ψi−1.
Since Ψn = dim(ker(ψn)) = 0, we can write this as

1,

fixed part

· · · m,

n−m+1

· · · m, m− 1, m− 2, · · · 1, 0, −1 −2 · · ·

+∆n+1

OO

+∆n+2

OOOO

· · · +∆n+m−1

OO

+∆n+m

OO

+∆n+m+1

OO

+∆n+m+2

OO

· · ·

So we are kinda back at the question of the dimension kernels of ψz : k[x, y]/Iz−m×k[x, y]/Iz−n −→ k[x, y]/Iz

(where ψz(A,B) = AF −BG).
This time it might be a little bit different, because we are not that interested in the kernel itself, but in the
difference of the dimensions of kernels ψz+1 and ψz. This is very important computation-wise.

Now what do we know about these kernels and their differences so far?

First of all, if F and G have no tangents in common, all the kernels (and also their differences) are equal to
zero, up till the index n+m+ 1. Then the kernels are:

ker(ψm+n−1) ={0}
ker(ψm+n) ={0}

ker(ψm+n+1) =(A0Gn, A0Fm)

ker(ψm+n+2) =(A0(Gn +Gn+1) +A1Gn, A0(Fm + Fm+1) +A1Fm)

ker(ψm+n+3) =(A0(Gn +Gn+1 +Gn+2) +A1(Gn +Gn+1) +A2Gn,

A0(Fm + Fm+1 + Fm+2) +A1(Fm + Fm+1) +A2Fm)

· · ·,

(37)

where Ai si either a homogeneous polynomials of degree i of equal to zero. Dimensions of these subspaces are

dim(ker(ψm+n−1)) = Ψm+n−1 =0

dim(ker(ψm+n)) = Ψm+n =0

dim(ker(ψm+n+1)) = Ψm+n+1 =1

dim(ker(ψm+n+2)) = Ψm+n+2 =1 + 2 = 3

dim(ker(ψm+n+3)) = Ψm+n+3 =1 + 2 + 3 = 6

· · ·,

(38)

and their differences are

∆n+m = Ψm+n −Ψm+n−1 =0− 0 = 0

∆n+m+1 = Ψm+n+1 −Ψm+n =1− 0 = 1

∆n+m+2 = Ψm+n+2 −Ψm+n+1 =3− 1 = 2

∆n+m+3 = Ψm+n+3 −Ψm+n+2 =6− 3 = 3

∆n+m+4 = Ψm+n+4 −Ψm+n+3 =10− 6 = 4

· · ·,

(39)

which is just what we need to even up the negative integers from the sequence Ω. So for this case we get

1,

fixed part

· · · m,

n−m+1

· · · m, m− 1, m− 2, · · · 1, 0, −1 −2 −3 −4 · · ·

+0

OO

+0

OO OO

· · · +0

OO

+0

OO

+1

OO

+2

OO

+3

OO

+4

OO

· · ·

which is just the most simple basic boring hill.
If F and G do have some tangents in common, the solutions above will apply too, they are just not ALL of the
solutions. They will be included in the corresponding kernels as subspaces. So the increase illustrated at the
sequence above is basically the minimal increase.
If Ki is some subspace of ker(ψi), then every ker(ψj) (j > i) will contain a corresponding subspace Kj , where
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Ki+1 = D1Ki (D1 is either homogeneous polynomial of degree 1 or equal to 0). Obviously dim(Ki+1) =
dim(Ki) + 1. Maybe a simpler way of putting is by showing that if K ∈ ker(ψi), then D1K ∈ ker(ψi+1),
D2K ∈ ker(ψi+2), D3K ∈ ker(ψi+3), etc (where Di is homogeneous polynomial of degree i). Difference of their
dimensions (dim(Di+1K) − dim(DiK)) is always equal to 1. Therefore every new subspace which occurs at
some point of the algorithm will start a full row of ones that starts at this points that continues to infinity.
This is illustrated in the following example.

11 14.5.2021: Demonstration of the idea above on an example

Example 1. Let

F = x2 − y5 (40)

G = x4 − y7 (41)

Then the kernels of the maps ψi (ψi : k[x, y]/Ii−n × k[x, y]/Ii−m −→ k[x, y]/Ii) are

ker(ψ3) = (0, 0)

ker(ψ4) = (0, 0)

ker(ψ5) = D0(x2, 1)

ker(ψ6) = D0(x2, 1) +D1(x2, 1)

ker(ψ7) = D0(x2, 1) +D1(x2, 1) +D2(x2, 1)

ker(ψ8) = D1(x2, 1) +D2(x2, 1) +D3(x2, 1)

ker(ψ9) = D2(x2, 1) +D3(x2, 1) +D4(x2, 1)

ker(ψ10) = D3(x2, 1) +D4(x2, 1) +D5(x2, 1) + E0(x4 − y7, x2 − y5)

ker(ψ11) = D4(x2, 1) +D5(x2, 1) +D6(x2, 1) + E0(x4 − y7, x2 − y5) + E1(x4 − y7, x2 − y5)

ker(ψ12) = D4(x2, 1) +D5(x2, 1) +D6(x2, 1) + E0(x4 − y7, x2 − y5) + E1(x4 − y7, x2 − y5) + E2(x4 − y7, x2 − y5)

· · ·
(42)

and the Omega sequence looks like this:

1 2 2 2 2 2 2 1 0 0 0 0 0 0 · · ·
= = = = = = = = = = = = = = · · ·
1 2 2 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 · · ·

1 1 1 1 · · ·
1 1 1 · · ·

· · ·

where the first row is the final sequence, second row is the ground(non-kernel contributions) and the other rows
are kernel contributions. Each element of the first row is the sum of the elements in its column, below it.
We can split the kernel contributions of this sequence into the boring ones (these exist in every intersection and
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depend only on m and n) and the interesting ones (these depend on the properties of the intersection)

1 2 2 2 2 2 2 1 0 0 0 0 0 0 · · ·
= = = = = = = = = = = = = = · · ·
1 2 2 2 1 0 −1 −2 −3 −4 −5 −6 −7 −8 · · ·

1 1 1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 1 1 1 1 · · ·

1 1 1 1 1 1 1 1 · · ·
1 1 1 1 1 · · ·

1 1 1 1 · · ·
1 1 1 · · ·

· · ·

Of course, the sum of the first row is equal to the intersection multiplicity of these two curves. IO(F,G) =
1 + 2 + 2 + 2 + 2 + 2 + 2 + 1 = 14.

more examples do exist on paper

In the project of Disseration we defined τk = max{deg(gcd(Fm, . . . , Fm+k, Gn, . . . , Gn+k))} (which have the
property IO(F,G) ≥ mn+ τ0 + · · ·+ τm). We already in what way the τk appear here.

toto nemas uplne doriesene, ale asi vidim ako to bude

also i think this could be made into an algorithm
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