13.8.2021: Upper bound of intersection multiplicity

Since the pyramids idea didn't work out, I've put my hopes into my dear friend \mathfrak{O} . Let z_0 be the step at which the algorithm ends. It is the first position where the \mathfrak{O} sequence reaches 0.

Example 1. Let

$$F = x^{2} - y^{5}$$
(1)

$$G = x^{4} + xy^{5} - y^{7}$$
(2)

Then the corresponding sequence is $\mathfrak{D} = [1, 2, 2, 2, 2, 2, 1, 1, 1, 0]$. (In the version below, 1 represent interesting 1s and \cdot represent boring 1s.)

1	2	2	2	2	2	1	1	1	0	0	0	
=	=	=	=	=	=	=	=	=	=	=	=	
1	2	2	2	1	0	-1	-2	-3	-4	-5	-6	
				1	1	•	•	•	•	•	•	
					1	1	•	•	•	•	•	
							1	•	•	•	•	
								1	•	•	•	
										•	•	

In this case, $z_0 = 10$,

It is be also defined as the smallest z, such that $\mathcal{O}/(F,G,I^z) \cong \mathcal{O}/(F,G)$. The intersection multiplicity have the following property:

$$I_O(F,G) \le m \cdot n + t \cdot (z_0 - n - m),\tag{3}$$

(here m and n are the multiplicities of F and G at O, and t is the number of their common tangents at O) This is a direct consequence of how many "ones" can we fit into the sequence before it ends. If we could find some pretty upper bound for z_{0} it would give us an upper bound for the intersection multiplicity

If we could find some pretty upper bound for z_0 , it would give us an upper bound for the intersection multiplicity itself. The examples suggest that the bound for z_0 it could be possibly a fairly low number, something like $(\deg(F) + \deg(G))$, or even $(m + \max\{\deg(F), \deg(G)\})$ or $(t + \max\{\deg(F), \deg(G)\})$.